時間:2022-07-28 22:56:51
序論:好文章的創作是一個不斷探索和完善的過程,我們為您推薦十篇抗震理念論文范例,希望它們能助您一臂之力,提升您的閱讀品質,帶來更深刻的閱讀感受。
中圖分類號:TU973+.31 文獻標識碼:A 文章編號:
一.引言
樓梯是建筑的一個重要組成部分,是最重要的疏散工具,在抗震防災中起著舉足重輕的作用。所以樓梯的設計是十分重要的工作,樓梯設計的好壞也直接影響到建筑的抗震能力。從地震被損壞的鋼筋混凝土結構房屋來看,其中一個特點是樓梯構件的破壞,影響了逃生通道安全,造成人員傷亡。根據2008年汶川地震震害的相關報告,樓梯對結構安全以及疏散時人身安全的意義非常重大。因此,我們有必要認真研讀規范的有關要求,結合工程實際情況,認真對待抗震設計時的樓梯設計。
二.抗震設計樓梯參與結構計算的重要性
現代建筑工程抗震性能的需求要求建筑工程設計過程中必須考慮抗震設計樓梯參與結構計算工作的重要性。以抗震樓梯設計對建筑物主體結構抗震性能的促進作用促進建筑物的抗震性能提升。建筑工程設計單位應根據現代建筑工程設計過程中樓梯設計對建筑物主體工程的影響強化抗震設計樓梯參與結構計算工作,實現建筑物抗震性能的提高,促進現代建筑工程設計目標的達成
在現代建筑工程的設計中,鋼筋混凝土框架結構所具有的優勢使得其在現代建筑工程的設計中有著極為廣泛的應用。在鋼筋混凝土框架結構中,樓梯能夠對樓梯間結構起到斜撐作用,增加主體結構的剛度。在傳統的結構設計中,由于計算方式與設計理論的限制使得樓梯及樓梯間不參與整體結構的計算。隨著現代建筑設計理論的日趨成熟以及建筑物抗震等級要求的不斷提高,建筑工程抗震樓梯設計參與整體結構計算已經納入相關規范要求。在抗震樓梯與樓梯間增加剛度的同時,還應與水平隔板、樓蓋板等做好鏈接,以此形成整體、提高建筑物的抗震性能。在汶川地震震后調查中,樓梯梯段板斷裂的情況非常普遍,嚴重影響了震后的自救與救災。而且,樓梯系統的斷裂也造成了對主體結構抗震性能的影響,造成了余震中建筑物抗震性能的下降。
三.樓梯和結構主體
樓梯對主體結構的影響主要表現有兩個方面,樓梯對豎向構件的影響以及樓梯自身的傳力。由于樓梯傳力,豎向構件往往會出現短柱或錯層。而樓梯本身傳力需得到保障,從而實現疏散功能。
理論研究以及一些震害調查表明,樓梯對主體結構的影響大小,主要取決于樓梯與主體結構的相對剛度比。主體結構整體剛度越大,比如抗震墻結構,框架一抗震墻結構,由于結構主體自身的剛度很大,整體性能好,樓梯剛度對于主體而言相對很小,那么它對主體影響就很小,有時可以忽略不計;而當采用框架結構,裝配式結構,特別是砌體結構的時候,樓梯對其主體的影響就不容小視了,在多遇地震作用下,結構基本是處于彈性工作狀態,填充墻、砌體承重墻沒有開裂或者開裂程度不高,剛度尚未退化,樓梯剛度在主體結構中依舊可以認為不大,而在超出設防烈度及罕遇地震的時候,結構一般進入彈塑性狀態,墻體開裂,剛度驟然降低,樓梯剛度在主體剛度中所占的比重就越加增大,現澆梯板可視為剛性樓板,承擔傳遞水平地震作用的重任,從而導致樓梯梯板拉裂,樓梯間短柱破壞,最終導致主體破壞甚至坍塌。
經過工程實例對比發現,樓梯構件是否參與結構整體計算,不僅影響地震作用效應的計算結果,也可能由于改變恒載、活載的傳遞途徑而對相關構件計算產生影響。
對比發現當其他區域荷載小于樓梯間時,不考慮樓梯影響計算結果顯示位移比較大,考慮樓梯剛度后剛心與質心的重合程度有所改善,位移比有所減小。
結合條文說明,規范允許根據不同的具體結構,判斷樓梯構件對整體的可能影響很大或不大,然后區別對待,并不要求一律參與整體結構的計算,但樓梯構件自身應計算抗震。現行規范對鋼筋混凝土結構樓梯間抗震設計的基本要求可歸納為:是否參與整體抗震計算,視情況而定;樓梯構件應進行抗震設計計算;加強樓梯間填充墻與主體結構的拉結。
由于地震動的不確定性、地震的破壞作用、結構地震破壞機理的復雜性,以及結構計算模型的各種假定與實際情況的差異,.目前,依據所規定的地震作用進行結構抗震驗算,不論計算理論和工具如何發展,計算怎樣嚴格,計算的結果還是比較粗略,過分地追求數值上的精確是不必要的。然而,從工程的震害看,這樣的抗震驗算是有成效的,不可輕視。
四.樓梯抗震設計的幾點建議
考慮樓梯對主體結構的影響時,應根據主體結構與樓梯的側向剛度大小,采取相應的設計措施:
1.樓梯采用現澆式或者裝配整體式混凝土結構,不應采用裝配式結構。
2.對框架結構,砌體結構及其他整體性不好的結構,結構計算中應注意考慮樓梯對主體結構的影響和主體結構對樓梯的影響,采用包絡設計的方法。基于現行規范,在對結構進行規則性判斷和位移計算時,可不計樓梯的影響。而構件設計則需要考慮樓梯的作用,按計入和不計人樓梯分兩種情況進行設計。
3.對主體結構剛度很大,整體性較好的結構,如抗震墻結構、框架一抗震墻結構等,一般不考慮樓梯的影響,不過在結構平面布置時,應重視樓梯間周圍的豎向構件,類似于電梯井,盡量使抗震墻位置合理,這樣,既可以使樓梯對主體結構的影響減小,同時也保護了樓梯構件。
4.需特別注意設置樓梯形成的框架短柱或錯層柱,柱箍筋除應滿足計算要求外,箍筋應全高加密,宜按抗震等級提高一級配置。
5.樓梯處梁上立柱時,柱子截面一般都很難做大,但該柱也應按照框架柱要求設計,保證其截面面積不小于300mmX300mm,柱最小邊長不應小于200mm,并相應增加另一邊高度。£在以往的設計中,當底層無地下室時,樓梯直接支撐在孤立的樓梯梁上,而根據震害調查發現,此做法不妥,地震時樓梯板吸收的水平地震作用在樓梯梁處的水平傳力路徑中斷,孤立的樓梯梁很難擔當由梯板傳遞的水平推力,梯板邊緣的梁截面處往往開裂甚至破環,設計中應盡量避免。
五.結束語
樓梯是建筑的一個重要組成部分,是最重要的疏散工具,在抗震防災中起著舉足重輕的作用。從地震被損壞的鋼筋混凝土結構房屋來看,其中一個特點是樓梯構件的破壞,影響了逃生通道安全,造成人員傷亡,所以建筑樓梯設計是非常重要的工作。綜上所述,不管是對規范理解出發,還是結合工程實際,樓梯設計對建筑抗震的影響應當被廣大設計師高度重視。目前來看,各種軟件的樓梯參與建筑抗震計算情況并不夠理想,不能過分依賴。設計可在比較合理的基礎上利用計算軟件,不拘泥于細節,不追求過高的計算精度,強調按概念設計進行各種調整。讓樓梯參與建筑抗震計算和加強抗震措施,使得樓梯對建筑抗震的影響降到最低,從而讓建筑結構更為合理。
參考文獻:
[1]嚴微 不同樓梯在地震下的反應分析[學位論文], 2010 - 太原理工大學:結構工程
淺談樓梯設計對建筑抗震的影響
[2]喬銳 [期刊論文] 《黑龍江科技信息》 -2012年7期
[3]孫燁SUN Ye樓梯剛度對震區塔式建筑抗震設計的影響分析 [期刊論文] 《浙江建筑》 -2009年9期
[4]吳波 樓梯結構的抗震性能分析及地震作用下對主體結構的影響 [學位論文], 2009 - 西南交通大學:結構工程
[5]王亞勇 戴國瑩WANG YayongDAI Guoying《建筑抗震設計規范》的發展沿革和最新修訂[期刊論文] 《建筑結構學報》 ISTIC EI PKU -2010年6期
新年伊始,鄭州市商業技師學院舉行第五屆教師論文大賽。經過近6個小時的角逐,商業貿易系師利君老師和旅游烹飪系周芳老師分獲一等獎,數控車焊系李林義等3名教師分獲二等獎,醫藥化工系赫中魁等5名教師分獲三等獎,機電工程系王金有等6名教師分獲優秀獎。大賽自2012年4月啟動以來,共征集到論文285篇。大賽組委會對各系篩選出的32篇論文進行了認真評審,最終確定16篇論文進入決賽。
大連理工大學
孔憲京教授主持項目獲國家科技進步二等獎
在2012年度國家科學技術獎勵大會上,大連理工大學孔憲京教授主持完成的“高土石壩抗震設計理論研究與工程應用”獲得國家科技進步二等獎。這是孔憲京教授繼2010年榮獲核電廠工程抗震領域的國家科技進步二等獎之后,再攀科技高峰,率領團隊在土石壩抗震研究方面取得的又一項重大科研成果。孔憲京教授科研團隊的科研項目研究成果對有效保障我國高土石壩抗震安全、優化結構設計、采取有效抗震措施、節約工程投資等發揮了重要作用,創造了顯著的經濟效益和社會效益。
鹽城技師學院
與常熟觀致汽車有限公司舉行校企合作簽約儀式
近日,鹽城技師學院與常熟觀致汽車有限公司舉行了校企合作簽約儀式。常熟觀致汽車有限公司初始注冊資本為34億元,由奇瑞汽車有限公司與世界500強企業以色列集團共同投資成立。院長呂成鷹充分肯定了觀致公司對校企合作工作所做的貢獻。她說,鹽城技師學院的辦學宗旨就是為企業服務,為現代企業提供需要的綜合素質高的技能人才,希望雙方樹立起“招生即招工,員工即學生”的理念,真正實現“專家進課堂、教師進企業”的深層次合作。
唐山勞動技師學院
召開首屆大專畢業生畢業答辯啟動儀式
日前,唐山勞動技師學院舉行了河北聯合大學唐山勞動高級技工學校函授站首屆函授大專生畢業設計答辯啟動儀式。唐山勞動技師學院院長、黨委書記兼函授站站長李,河北聯合大學繼續教育學院副院長王治國,負責畢業答辯的評委教師以及200多名即將畢業的首批函授大專生參加了啟動儀式。本次啟動儀式標志著唐山勞動技師學院函授站自2010年初建站以來,在河北聯合大學的支持下,經過全院師生的共同努力,迎來采擷豐收的時刻——第一屆215名函授大專生即將順利畢業。
廣西南寧高級技工學校
醫藥校區舉辦第二屆“趣味競技拓展活動周”
為了活躍校園文化氛圍,豐富同學們的第二課堂活動,增強班級團結力和凝聚力,廣西南寧高級技工學校醫藥校區學生科、團總支聯合舉辦第二屆“趣味競技拓展活動周”。此次活動周活動分三周舉行,每周舉辦一個項目,這三個項目分別為袋鼠跳、貼長龍、夾氣球。同學們以班級為單位組隊參賽,每個項目參加人數上限為20人,以三個項目的總分計算成績,共設一等獎2名、二等獎6名、三等獎8名。學生們紛紛表示很喜歡趣味競技拓展活動,豐富了自己的課余生活,密切了自己和同學間的交流,希望學校今后能繼續舉辦類似的活動。
大連市房地產高級技工學校
多位老師在全國職業學校教學設計及說課比賽中獲獎
為了提高教學質量,更好地貫徹“做中學,做中教”的職教方針,引進更好的教學方法并實現與外校的交流,大連市房地產高級技工學校教師積極參加全國中等職業學校教師教學設計和說課比賽,并取得了驕人的成績。吳麗媛老師參加機械類專業課程“創新杯”教師教學設計和說課大賽獲得二等獎,李雯老師參加數學課程“創新杯”教師教學設計和說課大賽獲得一等獎,侯曉寧老師參加工藝美術類專業課程“創新杯”教師教學設計和說課大賽獲得一等獎。
五四一高級技工學校
一、抗震技術提出背景
基于抗震性能的設計理論,在20世紀90年代由美國提出并開始這方面的研究。隨后該項理論研究在日本,澳大利亞,中國等國家開始受到重視。該種理論重在對建筑物的抗震能力的研究,對于如何預防強大的破壞力極強的地震,是該項研究面臨的主要問題。目前,世界上建筑物抗震能力相對較高的應數日本了。這個國家由于地理位置很是特殊,他處于世界上兩大地震活躍帶之一的環太平洋地震帶。活躍的地殼運動經常為日本帶來災難性的打擊,整個日本島國甚至面臨毀滅的境地。盡管如此,日本還是依然在頑強地和自然災害做抗爭。強大的具有毀滅性的地震成就了日本抗震建筑設計的輝煌。為了抵御地震發生后帶來的毀滅性破壞,日本國內的建筑物大都經過精心設計,抗震能力相當高,一般的地震根 本就不足為慮的。日本這樣一個彈丸之國,雖然有些時候狂妄自大,但其自身確實是具備很多值得我們借鑒的東西,建筑物防震技術就很值得我們學習和借鑒。
我國地理位置比較特殊,處于世界兩大地震活躍帶之間——環太平洋地震帶和環地中海喜馬拉雅地震帶。因此,我國的地震多發性相對于世界其他國家來說也是很頻繁的,如1976年唐山大地震、2008年汶川大地震、2010年玉樹地震。每一次地震破壞性都相當大,每一次都是慘痛的教訓。在地震中,許多居民房屋倒塌,流離失所,無家可歸。雖然事后國家舉全國之力恢復了重建,但慘痛的教訓是無法抹去的。每一個人或許都在思考:為什么有的房屋倒塌了而有的房屋依然矗立?答案明確得再明確不過。關心這一問題除了大眾輿論之外,恐怕最為關心的莫過于建筑設計師們。于是,在建房屋必須具備抗震能力的要求在建筑行業成了明確的理念。
二、房屋抗震技術的概念及其特征
(一)房屋抗震技術的概念
房屋抗震技術主要是指建筑物或者構筑物在設計和施工中必須應用到的具備預防和抵抗破壞性地震的技術能力。現代建筑業的發展引入了抗震防震的理念,并且抗震強度提升,不再是一般的震級,而是能夠抵抗強度更大的地震。目前,國內有相當一部分學者致力于抗震技術的研究,并取得了豐碩的成果。相關的文獻資料為抗震技術的應用提供了理論指導和技術支撐。
(二)房屋抗震技術的特征
1.房屋結構的合理性。建筑物需要能夠具備抵抗地震的能力,設計者首先應當追求房屋結構的合理性設計原理。房屋設計結構的合理性要求建筑材料的選取,建筑物的設計、施工都應當有步驟,有計劃的進行,追求每一個環節,每一個角度的精密性。
2.房屋主體的抗震性。房屋抗震技術的應用主要就是預防地震,因為地震的破壞力非常大,能夠摧毀地面不穩固的一切建筑物。房屋的設計施工注入抗震理念后,首先應當具備的能力就是抗震能力。而抗震性主要體現在房屋的主體結構上面,只有把建筑物的主體結構設計和施工好了,才能夠從根本上具備抗震的基本要求,然后才是對建筑物墻體等設施的要求。
3.設計施工的復雜性。對于建筑物的抗震防震要求,首先就得從設計上面下功夫,要使其真正具備抵御強度較大的地震破壞,設計者們在設計的前期需要做大量的論證工作,做到合理、充分的論證,使其具備科學性和合理性。設計者們完成了論證和設計工作后,這就需要施工者在施工中嚴格按照建筑的設計模式進行施工,并且精確度要求很高。要知道,再好的設計圖紙,如果沒有精良的施工者也是徒勞。
三、建筑行業引入抗震技術的意義
(一)提高人類抵御自然災害的能力
經過我國幾代人不懈努力地發展,我國人民居住的房屋的安全性能越來越高,特別是抗震技術的應用更是提升了我國居民對建筑物抗震的理解與控制的能力。回望歷史,一個多世紀以來的歷次大地震總是給人類社會造成出乎意料的損失,尤其是特大地震中房屋建筑的倒塌所造成的重大人員傷亡。1976年唐山大地震與2008年汶川大地震對我國簡直是破壞性的打擊,這使得我國建筑設計者們不得不考慮房屋建筑結構的抗震安全性問題。抗震技術的應用,使得我國房屋建筑結構性能大大提高,并且提升了抵御大地震的能力。
(二)改善我國居民的生存環境
現代工業飛速發展,無論是城市還是農村,一座座高樓拔地而起。這一切既預示著現代化的發展進程,同時也為人們的生存帶來危機。因為地震活動的頻繁,高樓要是發生倒塌,那就等于是致命的攻擊。而隨著抗震技術的發展與應用,使得房屋建筑的抗震能力大大提升,這直接改善了人們的生存環境。有了牢固的建筑,人們不用再惶惶不可終日。人們可以在較為安全的環境下學習、工作,而不用擔心建筑物隨時倒塌。
(三)促進我國建筑行業的新發展
我國的建筑業一直停留在傳統的設計施工技術上。傳統的建筑安全性能較低,那時對于抗震性能的要求不是很高,或者說是還沒有引入抗震的理念。隨著地震活動的頻繁,災害性帶來的損失的巨大,建筑設計、施工者們意識到了必須提高房屋的抗震性能,這時候,抗震理念應運而生。抗震理念在維持現行結構抗震設計原則的前提下,更加突出地明確結構在強烈地震下的損傷破壞部位,并通過這些預期部位的損傷與破壞,達到保證建筑結構內人員安全的目標,從而大大提高房屋內人員的安全性。隨著抗震理念應用的日趨推廣,這就促使建筑行業邁上了新的臺階,不斷向著更好的方向發展。
Abstract: the world's population increased continuously, make the per capita living space gradually reduce, and then make the emergence of the high-rise building become an inevitable result. In recent years, such as earthquake disaster for high-rise building with the great damage and loss makes people have to of high-rise building in the design and construction of the construction of the seismic performance increase of consideration. This article describes and analyzes the structure of the high-rise building aseismic design of many of the idea of the foundation, and further puts forward the specific methods of seismic design.
Keywords: high building; Seismic performance; Ideas; The specific method
中圖分類號:[TU208.3]文獻標識碼:A 文章編號:
地震因為其高破壞力和高不確定性兩個特征成為一種危害人類正常生活的重大自然災害。同時也成為包括高層建筑在內的絕大部分建筑設計和施工項目都必需考慮的一個重要因素之一[1]。因為在人類的發展歷史上,地震這一自然災害給人們帶來了巨大的經濟財產和人身安全的損失,于是在很早以前抗震設計就成為了建筑結構設計里的一個重要考慮因素,而建筑結構的抗震設計理念和方法也隨著歷史的進步在不斷的發展。雖然人類目前還無法準確預測地震災害并確保建筑物在地震中免受損失和破壞,但是已經形成了一套比較完整的理論和方法體系,在一定程度上能做到“小震不壞,中震不修,大震不倒”,并盡大可能的做到了減少因地震建筑物倒塌而給人們生命和財產帶來的的嚴重損失。
高層建筑結構抗震設計理念
一直以來,對于建筑物的抗震設計理念和方法的研究都是建筑結構設計中的一個必要考慮因素,而增強建筑物的抗震性能是理論研究者為之奮斗不懈的的目標。現有的抗震設計理念是經過以下幾個重要的階段而總結得來的。
一是剛性設計理念。這是人們應對地震這一自然災害所總結和研究出的第一個設計的理念。當時的地震工程學者對地震和抗震理論知識的了解還很少,很貧乏。學者普遍認為建筑物在地震中損壞甚至倒塌的主要原因是因為建筑物的剛度不夠,不能抵抗地震的巨大能量才會倒塌。按照這一設計理念人們在房屋的施工建設工程中就通過增加剪力墻的厚度和承重墻的鋼筋和水泥的比例,以此來保證墻體結構有足夠的剛度,從而時地基與整個主體建筑形成一個剛性的有機整體。但是這一理念有其自身所具備的局限性,因為強調對建筑物剛度的要求,使得建筑物在高度和跨度上的發展收到限制。
二是柔性設計理念。因為看到了剛性設計理念的先天性不足,在剛性設計理念之后,抗震設計專家和學者們又提出了一個與剛性設計理念全然不同的柔性設計理念。這一理念放棄了對建筑物剛性的追求并且利用柔性建筑在地震中建筑物可以有效的側移和形變的優點來減少地震對建筑物的損害。事實表明,這一設計理念具備了剛性設計理念所無法具備的優勢,并且在一些小的低等級的地震中能比較好的保證建筑物的完好[2]。但是也僅僅是限于應對低等級的地震,事實表明,當遇到較高等級的地震時,在這一設計理念的指導下所建設的房屋是沒有任何抵抗力的。
三是結構控制設計理念。這一設計理念主要是通過對建筑物的控制結構的設置使已有的結構和新生的結構共同抵御地震。最近這些年以來,這一設計理念被廣泛應用于橋梁和高層建筑物的抗震設計中。
第四個是性能設計理念。這一設計理念的主要思想是讓建筑物在面對不同等級地震的時候能有不一樣的與之對應的抗震能力與性能,體現了多級抗震設防的重要思想[3]。該理論是在之前剛性設計理念、柔性設計理念和結構控制設計理念的基礎之上發展的全新的理論,因為其較大的抗震優勢,使得它成為現階段實際應用最為廣泛的抗震設計理念。它具體表現為以下幾個方面:①盡可能增加多道抗震防線。每一個抗震機構的體系都不是一個單一的體系,而一般都是右多個有良好延性的系統構成,而每一個分系統又是通過有較好延伸性能和柔性的構件相互連接配合作用的。比如說有剪力墻-框架體系是由具有良好延性的剪力墻和柔性較高的框架組成,而剪力墻又是分為雙肢剪力墻和多肢剪力墻分體系。一般的,強地震都伴隨著一系列的余震,這就要求建筑物節構具備抵抗強震的第一道防線之后還能有第二道,第三道防線來抵抗接下來的余震,只有這樣,才能保證建筑物在強震之后仍舊能夠不倒塌。這就要求每一樓層里的主要抗震耗能構建在強震中屈服后其他的輔助構建仍具有彈性性能,從而延長構件的“有效屈服時間”。 ②增強薄弱部位的抗震性能。構件的實際承受能力和計算承受能力是對構件合理布置的基礎,當在實際地震過程中,構件的實際承受里高于計算承受力,也就是構件面臨承受力的不定集中的情況,這時候就需要通過其他的與之相連的輔助構件對它的承受力完成轉移[4]。在薄弱部位(很有可能出現力的集中的部位)增強抗震設計,提高其抗震性能,能夠有效做到保證建筑物在地震中變形小,不倒塌。
二、高層建筑結構設計方法
對于建筑結構抗震設計,通常要考慮高層建筑物的剛度、強度,和延性,因為不僅要保證整體結構在地震中能夠承受一定范圍內的軸壓力和剪力,同時還要做到在力過大的時候在允許結構有一定的變形但是不至于嚴重倒塌。這是抗震的主要內容,也是抗震的核心內容。而現在具體的設計方法有以下這些。
一是多采用強剪弱彎結構。建筑結構中的梁和柱子簡剪力破壞比軸向扭力破壞所帶來的后果要嚴重的多,所以在設計之中要增強粱柱和墻體的剪力弱化軸向彎力。另外與此類似的還應該多采用強柱弱梁和強節點弱構件的設計方法。
二是改善高層建筑結構均勻性設計。首先是高層建筑是一個三維結構,在地震中作用力的方向是任意的,使其側向兩軸在剛度上均勻是保證其抗震性和抗風性的重要因素[5];然后是在沿豎直方向的層剪力剛性性能盡量不要發生突變;最后就是沿同一軸的各向抗側力結構要避免出現剛度較大而延性較低的結構。
三是加強短柱抗震性能。①改善建筑物整個結構的抗震性能可以通過縮小短柱的截面積,增大剪跨比進而提高短柱的計算受壓載重力的方式達到。具體的方法是增強混泥土的實際等級,降低其軸壓比。②采用鋼管混泥土的方式澆灌短柱。在由圓形鋼管構成的構件體系里澆筑混泥土保證了混泥土能夠在三個方向都能受到足夠強度的壓力,從而提高了混泥土本身的抗壓能力和極限應力,進而在保證剛度和強度的前提下增強了其延性。③采用分體柱結構。這種方法是通過人為的將柱子的抗彎性能降低到其抗剪性能之下,從而用短柱在地震中的延性破壞代替它的水平斷裂進而保證建筑物不易倒塌。
結語
隨著社會和科技的進步和發展,專家學者對建筑物結構抗震設計的理念也在不斷的更新進步,進步和先進的理念給我們帶來的是可靠的結構設計方法。雖然人類在戰勝地震這一自然災害的路上還是任重而道遠,但是我們有理由相信,隨著人們對已有地震經驗的總結,我們的抗震工程學者會研究出更好的高層建筑結構設計理念理念和方法,進而進一步保證人類生命和財產不受損失。
參考文獻:
[1] 張彭,解林偉.試析高層建筑結構設計理念及方法[J].陜西建筑,2011(08)
[2] 王欣.淺談高層建筑結構選型要點[J].科技創新導報,2010,(15)
abstract
combining with performance grades of reinforced concrete structures at home and abroad, the seismic
performance of steel reinforced concrete (src) structures can be induced into four levels: normal service, temporary service, life safety and collapse prevention. the failure modes and characteristics of src columns are introduced, and limit states of the four seismic performance levels and their dominating parameters are put forward. on the basis of the experiments and results of src frames and columns, the story drifts angle limitation and range of crack width on the column end are obtained for four different seismic performance levels. finally considering ideas of performance based seismic design, problems needed much further study about src structures are proposed.
keywords: steel reinforced concrete (src) structures, seismic performance levels, tolerantdeformation values, quantitative index
1. 引 言
型鋼混凝土結構(src 結構)又叫勁性鋼筋混凝土結構或鋼骨混凝土結構,是鋼-混凝 土組合結構的一種形式。src 結構通過把鋼和混凝土巧妙地組合在一起,充分發揮了這兩 種材料的特性,其具有比傳統結構承載力高、強度剛度大、穩定性和抗震性能好等優點。隨 著超高層建筑的發展和理論研究的深入,src 結構在我國將具有非常廣闊的應用前景。目 前國內外對 src 結構的研究工作和成果主要集中在構件的承載能力,即針對強度計算開展 研究[1]。隨著基于性能抗震設計理論的提出和發展,人們意識到這種傳統基于力的設計方 法還存在缺陷,開展基于性能的 src 結構抗震設計理論則更加科學合理,既符合當代抗震 設計理念的發展趨勢,又為工程實踐應用和推廣型鋼混凝土結構提供基礎。
確定 src 結構在不同性能水平下的容許變形值是實現其基于性能抗震設計理論的前提 和關鍵。由于結構的性能與破壞狀態有關,而結構的破壞狀態又可由結構的反應參數或者某 些定義的破壞指標來確定,所以,結構性能水平可以用這些主要的參數來劃分。容許變形值 被認為是比較重要的反應參數,但對此方面的研究還比較欠缺,本文即在此背景下研究 src 結構功能失效的判別參數和容許變形值的大小。
2. src 結構的性能水平和抗震設防目標
2.1 性能水平劃分
結構的抗震性能水平是指建筑物在某一特定設防地震水準下預期達到的最大破壞程度, 或容許的損壞極限狀態。目前對鋼筋混凝土結構性能水平的劃分比較明確,比如我國現行抗 震規范[2]將其分為三檔,美國 vision2000、fema273 和 atc-40 分為四檔,當然還有學者 提出其他不同的劃分標準。
性能水平為基于性能的抗震設計和震后修復加固提供依據,對于 src 結構,結合已有 的劃分方法和試驗理論研究成果[2],將其性能水平分為四檔,見表 1 所示。
表 1 src 結構四個性能水平及其宏觀描述
tab.1 target performance levels and damage control of src structures
2.2 抗震性能目標確定
結構的性能目標是指一定超越概率的地震發生時,結構期望達到的某種功能水平。我國 現行抗震規范采用小震不壞、中震可修、大震不倒的三水準設防目標,但在表 1 提出的 src 結構性能水平背景下,已有的三水準抗震設防目標需要更加細化。按照小中大三個地震作用 水平和“四檔”性能水平,可對 src 結構建立表 2 所示的抗震性能目標。
表 2 src 結構抗震性能目標
tab.2 seismic performance objectives
(其中:①為基本目標,指一般使用要求的建筑應具備的最基本性能目標;②為重要目標,指重要性很高
或地震后危險性較大的性能目標;③為非常重要目標,指對安全有十分危險影響的性能目標)
可以看出,排除掉不符合實際工程的情況,這里對 src 結構建立了 10 個抗震性能目標,
其比鋼筋混凝土結構的三水準設防目標有所提高,且“中震可修”的性能目標變得更加具體 化。以上三個地震作用水平、四檔結構性能水平和 10 個抗震設防目標的提出為實現 src 結 構基于性能的抗震設計理論奠定了基礎。
3. src 框架柱的破壞模式及描述
src 構件是在混凝土中主要配置型鋼,同時配有受力和構造鋼筋。型鋼分為實腹式和 空腹式,實腹式型鋼主要有 i 字鋼、h 形鋼和 l 形鋼等。理論和實踐均證明,實腹式 src 構件具有較好的抗震性能,而空腹式 src 構件的抗震性能與普通 rc 構件的抗震性能基本 相同。因此,這里主要研究含鋼率為 4%~8%的實腹式 src 構件。
3.1 破壞模式和特點
src 柱在水平荷載作用下主要產生三種破壞模式,破壞形態按剪跨比的不同大致分為 三種。當剪跨比小于 1.5 時,src 柱發生剪切斜壓破壞,首先剪跨段產生許多大致平行的斜 裂縫,將混凝土分成斜向受壓短柱,鋼骨腹板此時基本處于純剪應力狀態,最后鋼骨腹板在
近似純剪應力狀態下達到屈服強度,剪壓區混凝土壓碎而破壞;當剪跨比為 1.5~2.5 時,src
柱在反復荷載作用下發生剪切粘結破壞,首先在最大彎矩處出現剪切斜裂縫或豎向粘結裂 縫,隨著荷載的增加與往復循環,粘結裂縫擴展成兩條沿型鋼翼緣的豎向粘結主裂縫,最后 裂縫處混凝土保護層剝落,剪切承載力下降,構件破壞;當剪跨比大于 2.5 時,src 柱的承 載力往往由彎曲應力起作用,一般發生彎曲破壞,其首先在最大彎矩截面處形成水平裂縫, 隨著荷載增加,柱底縱筋屈服,緊接著型鋼翼緣屈服,隨之腹板屈服,外圍混凝土不斷剝落, 縱筋和型鋼翼緣壓屈,最后 src 柱達到最大承載力而破壞。
3.2 與 rc 柱破壞的主要區別
試驗研究表明,src 柱比 rc 柱具有更優越的抗震性能,其優越性主要在于型鋼的影響。 型鋼的存在使構件的變形能力增強,破壞時吸收的能量增大,延性也相應得到提高。rc 柱 的最終破壞是由于壓區混凝土的壓酥,src 柱由于設置較強勁的鋼骨,壓區混凝土逐漸壓 酥后,rc 部分的承載力將向鋼骨轉移,其后期仍有相當大的變形能力來延緩破壞。可見, 無論在承載能力和剛度方面,還是在延性和耗能能力方面,src 構件均體現了良好的抗震 性能,其在不同性能水平下的變形容許值也將大于傳統 rc 結構,這方面的研究工作值得深 入開展。
4. src 結構功能失效的判別標準和容許變形值大小
4.1 四個性能水平及其極限狀態
目前關于結構性能水平的劃分方法很多,美國 vision2000、fema273 和 atc-40 均將 其劃分為四種性能水平,日本和墨西哥則采取三重性能水準,參照已有的劃分標準和我國新 的“建筑工程抗震性態設計通則(試用本)”,本文按照我國抗震設計的需要和建筑損傷加重 的程度,對 src 結構采用正常使用、暫時使用、生命安全和接近倒塌四個性能水平。
傳統基于力的抗震設計理論將 rc 結構的極限狀態分為承載能力極限狀態和正常使用 極限狀態,基于性能的抗震設計考慮到“投資-效益”因素,從結構受力和業主損失兩方面出 發,對應于所提的四個性能水平,將 src 結構的破壞極限狀態分為正常使用極限狀態、暫 時使用極限狀態、生命安全極限狀態和接近倒塌極限狀態。
4.2 不同性能水平的失效判別標準和參數
為了確定 src 框架柱在四個性能水平下的容許變形值,首先應該能夠對各種性能水平 的損壞極限狀態進行描述,相應的就必須建立 src 柱不同性能水平的失效判別標準和參數。 傳統的 rc 結構采用層間位移角這種單一指標作為量化參數,對于 src 結構,可以利用層 間位移角、裂縫寬度、塑形耗能、塑形轉角和延性系數等加以描述和量化。
src 壓彎構件經歷了混凝土開裂、裂縫延伸擴展,直到壓區混凝土剝落,受壓縱筋和 型鋼受壓翼緣屈服,承載力達到峰值的一系列過程,構件最終以受壓區混凝土破碎作為喪失 承載力的標志。為了與上述四檔性能水平相對應,可將其整個受力過程劃分為彈性階段、帶 裂縫工作階段、彈塑性工作階段和破壞階段。
在前述 src 柱破壞形態與剪跨比的定量關系基礎上,可以建立 src 柱三種破壞模式各 自的失效判別標準。經過分析,發現得出的三種失效判別標準之間有很多共同點,因此可將 其歸納為統一的判別標準以便應用。對于 src 柱,從開始加載到沿柱身出現剪切斜裂縫或 彎曲裂縫為正常使用性能階段,此為彈性工作階段,以開始出現斜裂縫或彎曲裂縫為正常使
用性能極限狀態;從混凝土開始出現裂縫到受拉鋼筋或型鋼受拉翼緣屈服為暫時使用性能階
段,此階段是帶裂縫工作階段,以受拉縱筋或型鋼翼緣屈服為暫時使用性能極限狀態;從型 鋼開始出現屈服到外圍混凝土剝落,縱筋壓屈且水平荷載達到最大值為生命安全性能階段, 此為彈塑性工作階段,以水平荷載達最大值為生命安全性能極限狀態;從 src 柱承載力達 最大值到混凝土保護層嚴重剝落,直至核芯混凝土發生局部破碎且承載力嚴重下降為接近倒 塌性能階段,此階段為塑形階段,以核芯混凝土發生局部破碎為接近倒塌性能極限狀態。
4.3 不同性能水平的容許變形值
結合上述判別標準,可分別以層間位移角、裂縫寬度、塑形耗能和延性系數等作為 src 結構四個性能水平極限狀態的判別參數。考慮到其中一些指標計算的難度,并為了與我國抗 震規范的性能指標相一致,這里以層間位移角和框架柱的裂縫寬度作為各種性能水平極限狀 態的判別指標。
為了得到各種性能水平的層間位移角范圍,本文對國內外 src 試驗柱、src 平面框架 試驗共約 90 個數據進行了統計分析,試驗框架柱大部分為實腹式 src 構件,軸壓比范圍為
0.3~0.8,體積配箍率為 0.8%~2.2%。通過分析文獻[4]-[20]中試驗柱和平面框架的變形性能, 以及對各個性能水平極限狀態的層間位移角統計結果來看,所有試件在未開裂彈性階段的層 間位移角分布范圍為 1/400~1/185,其中 1/400 對應的 src 柱僅有不到 4%的配鋼率且軸壓 比較高,大部分試件的彈性位移角集中在 1/350~1/200 范圍內;僅有少數試件測到 src 柱 受拉鋼筋或型鋼屈服時的層間位移角,分布范圍為 1/120~1/100,有的學者統計為 1/133~
1/100,但大部分集中在 1/120 左右;所有試件均得到了 src 構件在接近倒塌極限狀態的層 間位移角,其分布范圍為 1/53~1/11。
表 3 src 結構各性能水平的層間位移角分布范圍及分布比
tab. 3 distribution range and proportion of inter-storey drift
正常使用階段
從上表各性能階段的層間位移角分布情況來看,src律性較好。按照各個性能水平層間位移角的分布比例,在達到一定安全保證率的情況下,將
src 框架結構正常使用、暫時使用和接近倒塌三個性能水平極限狀態的層間位移角限值定
為 1/350、1/120 和 1/35;同時,將生命安全狀態的層間位移角限值設在 1/120 和 1/30 之間, 取為 1/75。
另外,框架柱的裂縫寬度也易于作為各種性能水平極限狀態的判別指標。文獻[4]-[20]
所做的 src 框架柱抗震性能試驗中,在對層間和柱端位移角測量的同時,考察到的柱端裂
縫寬度 在正 常使用 、暫 時使用 、生 命安全 和接 近倒塌 四個 性能水 平的 分布范 圍為
0.05~0.1mm、0.5~1mm、1~2mm 和大于 2mm。
綜上所述,本文提出的 src 框架結構在不同性能水平時的層間位移角限值和柱端裂縫 寬度可總結為表 4。
表 4 src 框架結構性能水平量化指標限值
tab. 4 limit value of quantitative index for src structures
5. 結論及建議
1) 提出基于性能的 src 結構抗震設計理論這一新課題,結合國內外對鋼筋混凝土結構 性能水平的劃分標準,將 src 結構的性能水平劃分為正常使用、暫時使用、生命安全和接 近倒塌四個等級,在此基礎上建立了 src 結構的 10 個抗震設防目標;
2) 總結了 src 柱在不同剪跨比時的破壞形態,提出了四個性能水平的失效判別標準和 參數,建議各自的層間位移角限值分別取 1/350、1/120、1/75 和 1/35,并將對應的柱端裂縫 寬度范圍定為 0.05~0.1mm、0.5~1mm、1~2mm 和>2mm;
3) 本文所提四個性能水平的容許變形值僅建立在少量試驗基礎上,還需要將試驗量測 結果和大量數值模擬結合起來,從理論上建立容許變形值的計算公式;同時,已有的 src 結構試驗研究主要針對框架結構,目前迫切需要開展型鋼混凝土組合件和型鋼混凝土剪力墻 的試驗研究,以便為全面實現 src 結構性態抗震設計提供依據。
參考文獻
[0]
[1] jgj138—2001/j130-2001. 型鋼混凝土組合結構技術規程[s]. 北京:中國建筑工業出版社,2001.
[2] gb50011-2001.抗震結構設計規范[s]. 北京:中國建筑工業出版社,2002.
[3] 李俊華, 王新堂等. 低周反復荷載下型鋼高強混凝土柱受力性能試驗研究[j]. 土木工程學報.2007,
40(7):11~18.
[4] 賈金青,姜睿,厚童.鋼骨超高強混凝土框架柱抗震性能的試驗研究[j].土木工程學報,2006,39(8):14~18.
[5] 聞洋.鋼骨高強混凝土柱受力性能的試驗研究[j].混凝土,2006,(9):25~26.
[6] 薛偉辰,胡翔.鋼骨混凝土框架滯回分析研究[j].地震工程與工程振動,2005,25(6): 76~80.
[7] 李斌,聞洋,李云云.鋼骨高強混凝土柱受力性能的試驗研究[j].包頭鋼鐵學院學報,2006,25(2):197~199.
[8] 蔣東紅 , 王連廣 , 劉之 洋 . 鋼 骨高強 混凝土框 架 柱開裂荷 載 的試驗研 究 [j]. 四川建筑 科 學 研 究,2002,28(3):7~9.
[9] 曹萬林等.異性截面鋼骨混凝土柱抗震性能試驗研究[j].世界地震工程,2004,20(2):64~68.
[10] 白國良,石啟印.空腹式型鋼混凝土框架柱的恢復力性能[j].西安建筑科技大學學報,1999,31(1):32~34.
[11]黃亮.深圳時代財富大廈超高層建筑結構若干問題研究[j].工程抗震與加固改造,2006,28(3):60~64.
[12] 薛建陽,趙鴻鐵.型鋼混凝土框架模型的彈塑性地震反應分析[j].建筑結構學報,2000,21(4):28~33.
[13] 徐培福等.帶轉換層型鋼混凝土框架—核心筒結構模型擬靜力試驗對抗震設計的啟示[j].土木工程學 報,2005,38(9):1~8.
[14] 楊勇, 郭子雄, 聶建國. 型鋼混凝土豎向混合結構過渡層抗震性能研究綜述[j]. 工程抗震與加固改 造,2006,28(5):78~86.
[15] 李丕寧, 秦榮.基于性能的高層鋼—混凝土混合結構住宅設計 [j].工程力學, 2007, 24(sup1):87~93.
[16] 田玉基等.鋼骨混凝土梁式托柱轉換層結構的研究[j].工業建筑,2000,30(2):54~57.
[17] 劉陽.核心型鋼混凝土柱抗震性能實驗研究[碩士論文].華僑大學碩士學位論文,2006.
[18] 莊云.src 柱—rc 梁組合件抗震性能試驗研究[碩士論文]. 華僑大學碩士學位論文,2006.
[19] 王妙芳 , 郭子 雄 . 型鋼混凝土柱抗震性態水平及極限狀態的討論 [j]. 工程抗震與加固改造 .2006,
28(3):31~36.
[20] mizuo inukai, kazuya noguchi, masaomi teshigawara, and hiroto kato. seismic performance composite columns using core steel under varying axial load [j]. 13th
1 引言
地震給人類造成的最大危害是房屋倒塌,危度生命和財產安全。磚房在歷次地震中的震害很嚴重,農村、城鎮房屋建筑的主體為多層砌體結構。在地震力的作用下,磚結構易發生脆性的剪切破壞,從而導致房屋的破壞和倒塌。全國城鎮民用建筑中,以磚砌體作為墻體材料的占90%以上,多層砌體(含底框磚房)所占(面積)比例達89%。抓好抗震設防地區建設工程的抗震設計,對減輕地震災害有積極的作用。因此加強抗震地區合理的進行結構抗震設計是十分重要的工作。
2 農村房屋設計中存在的主要問題
(1)在建多層砌體住宅中,房屋出現超高現象。有些底層還出現店面屋
(2)有的房屋為設置大客廳,犧牲門間墻寬度,開大門洞,大門洞間墻寬僅有240mm,并將陽臺做成大懸挑從而擴展客廳面積,當部分地方尺寸滿足不了要求,也不注意采取措施,采用增大截面及配筋的構造柱替代磚墻肢,把布局改得亂七八糟的,不僅不美觀,平面改成層次不齊,墻體沿豎向布置上下不連續。
(3)在房屋設計中沒有對抗震承載力進行計算。
(4)房屋在抗震設計中,采取的抗震措施不到位。很多設計不完整,設置不足,細節不清楚,不管能實效不,就靠圖紙來施行。
(5)在建多層樓房屋中,為了滿足部分大空間需要,底層或頂層采用“混雜”結構體系的,在底層或頂層局部采用鋼筋砼內框架結構,有的僅將構造柱和圈梁局部加大,當作結構的框架。
3.農村建筑抗震設計的基本原則
(1)選擇對抗震有利的場地和地基,從地形地貌看,應選擇地勢平坦開闊的地方作為建筑場地。
(2)合理規劃,避免地震時發生次生災害。房屋不要建得太密,房屋的間距以不小于1~1.5倍房屋的高度為宜。
(3)抗震結構方案一般應采用矩形、方形、圓形的平面布置。要選擇經濟合理的設計方案
(4)保證結構的整體性,并使結構和聯結部分具有較好的塑性。
(5)盡量不做建筑突出屋面的磚煙囪、女兒墻等,以免引起房屋破壞
(6)減輕建筑物的自重,降低它的重心位置。建筑物所受的地震荷載的大小和它的重量成正比。減輕建筑物的重量,是減少地震荷載最經濟最有效措施。
(7)購置正規合格材料。材料強度應達到設計要求,按設計圖紙施工,并嚴格按照施工規范施工。
4農村房屋抗震設計
4.1房屋坐落設計,布局要合理
房屋布局要緊湊,美觀合理。盡量設計為正房,從而加大才光亮。區位選址要合理,建筑物與周圍環境相協調,有足夠的人均建筑面積,充分利用土地資源,使住宅具有足夠的抵抗自然災害能力。房間設備亮度足夠,通風良好,南北朝向為佳,朝向的間距在凈高1.5倍以上。房屋總高度與總寬度的最大比值,不能超過抗震規范要求。
4.2結構體系設計
首先應采用橫墻承重或縱橫墻共同承重的結構體系。縱橫向應應具有合理的剛度和強度。對出現薄弱的地方應采取相應措施提高其抗震能力。墻體布置應滿足地震作用有合理的傳遞途徑。同一結構單元不應采用磚房與底框磚房或內框架磚房或框架結構等“混雜”的結構類型。應采用相同的結構類型。
4.2.1外墻維護設計。優先采用陶粒空心砌塊、陶粒聚苯砌塊作為外墻圍護。
4.2.2窗戶設計。要針對地區特點、窗的位置、朝向及室外遮擋等情況,進行合理的設計。農村住房可采用現行建筑設計規范中規定的窗地比。科技論文。窗應布置在房間或開間中部。這樣可以使室內照明度均勻,窗臺高度高度一般為900mm,不能過高或過低。科技論文。
4.2.3抗震設計。抗震性能好壞取決于建筑地點、地質條件;建筑物的設計是否符合抗震設計規范;施工質量的優劣。建造中適當配以構造柱、圈梁及拉結筋,以增強建筑物的抗震能力。
4.2.4平、立面布置。有的沒抗震設計理念,為開大門洞,縮小門間墻寬度。建筑的平面布置和抗側力結構的平面布置要對稱,有規則。縱、橫墻沿平面布置不能對齊的墻體較少,樓梯間不宜設在房屋的轉角處,房屋轉角處的門窗間墻承受雙向側向應力,其局部尺寸應不小于lm;其余外縱墻的門窗間墻局部尺寸部分不滿足1m要求時,其限值可放寬到0.8m;內墻門間墻局部尺寸不滿足要求時,可用設構造柱來滿足。建筑的立面和豎向剖面力求規則,結構的側向剛度宜均勻變化,墻體沿豎向布置上下應連續,避免剛度突變。當房屋的立面高差較大、錯層較大,采用防震縫將結構分割成平面和體形規則的獨立元。雖然磚砌體與構造柱和圈梁可以增加房屋的延性。但它們不能同時發揮作用。
4.3抗震計算
抗震計算是抗震設計中的重要內容,是保證滿足抗震承載力的基礎。對平面和豎向不規則的多層磚房采用考慮地震扭轉影響的分析程序。多層磚房的抗震計算可采用底部剪力法。
4.4抗震措施
為保證房屋在地震中有良好的抗震能力,以下介紹了幾點抗震措施內容。
4.4.1構造柱和圈梁的設置
現在農村很多房屋是多層砌體房屋。對橫墻較多或較少的要采取不同設置,對橫墻較少的應根據房屋增加一層或二層后的層數。對橫墻較多應按要求設置構造柱。對橫墻承重或縱橫墻共同承重的裝配式鋼筋砼樓、木樓、屋蓋應按抗震規范要求設置圈粱。圈梁的截面和配筋不能太大。
4.4.2構件間的連接措施
(1)構造柱與樓、屋蓋連接:當為現澆樓、屋蓋時,在樓、屋蓋處設240mmx120mm拉梁與構造柱連接。為屋蓋時.構造柱應與每層圈梁連接。
(2)構造柱與磚墻連接:構造柱與磚墻連接處應砌成馬牙槎。并沿墻高每隔500mm設2Φ6拉結鋼筋,每邊伸入墻內不小于1m。
(3)墻與墻的連接:抗震設防烈度為7度時,層高超過3.6m或長度大于7.2m的大房間,外墻轉角及內外墻交接處,當未設構造柱時,應沿墻高每隔500mm設2Φ6拉結鋼筋,每邊伸入墻內不小于lm。
(4)屋頂間的連接:突出屋面的樓梯間,構造柱應從下一層伸到屋項間頂部,并與頂部圈粱連接。
(5)后砌墻體的連接:應沿墻商每隔500mm設2Φ6拉結鋼筋與承重墻連接。每邊伸入墻內不小于0.5m。抗震設防烈度為8度到9度時。長度大于5.1m的后砌墻頂,應與樓、屋面板或梁連接。科技論文。
(6)欄板的連接:磚砌欄板應配水平鋼筋,并且壓項臥梁應與砼立柱相連。
(7)構造柱底端連接:構造柱可不單獨設基礎,但應伸入室外地面下500mm,或錨入室外地面下不小于300mm的地圈梁。
4.4.3懸臂構件的連接
(1)女兒墻的穩定措施:抗震設防烈度為6~7度時,240mm厚無錨固女兒墻(非出入口處)的高度不能超過0.5m,當超過時,女兒墻應按抗震構造圖集要求采取措施。女兒墻的計算高度可從屋蓋的圈梁頂面算起。當屋面板周邊與女兒墻有鋼筋拉結時。計算高度可從板面算起。
(2)懸挑構件:懸臂陽臺挑梁的最大外挑長度不能大于1.8m.不應大于2m。并且不能采用墻中懸挑式踏步或豎肋插入墻體的樓梯。
5農村新建房屋的措施
新建房屋要從當地環境、設計方案、機構、材料、人員等方面進行控制,從而提高房屋的施工質量和房屋抗震水平。
對于當地的環境做一個系統的調查,做到因地制宜。合理采用設計方案,加強新型房屋結構的抗震能力的技術措施。在房屋建造區域建立地勘資料,為農民服務。作為地震行政主管部門應加強對農民地震知識的宣傳,加強地震防范意識。對于建筑的用料要嚴格進行控制,防止使用不合格的建筑材料,以免建造質量低劣的房屋。無論是村民還是施工人員應具備一些基本的抗震知識。
6.結束語
隨著我國農村經濟水平的提高,農村住宅數量越來越多,越來越多的農民建新房,多層房屋,在建房中,應重視房屋抗震設計中的各個環節,將工程質量放在首位,嚴格按照施工規范要求施工,加強規劃、設計、施工方面的管理,從而降低房屋的地震程度。
參考文獻:
[1]柴旭輝.村鎮民房抗震能力的現狀及加強措施[J].山西建筑,2005,1(1):50―51.
[2]姚謙峰,蘇三慶.地震工程[M].西安:陜西科學技術出版社,2001.293―294.
引言
房屋的抗震性能最大程度上取決于房屋的抗震設防標準,抗震設防標準越高,房屋的抗震性能就越強。目前,已有數百位專家在研究討論新的房屋抗震設防標準,以期修改沿用多年的房屋建造抗震標準,增強新建房屋的抗震能力。北京地區近日已率先將農房抗震要求提高到了能抵御8級地震的高標準。據測算,抗震設防標準每提高一級,建筑成本將隨之提高8%-10%。 房屋的選址是房屋抗震性能的外部主要條件,初步總結四川地震的經驗和教訓可以發現,遭遇同等強度地震的不同位置的房屋,其抗震性能有所不同。位于地質斷層附近的房屋比其他房屋更易被震塌。我國是一個地震多發國家,發生過破壞性地震的城市占全國城市總數的10%以上。因此,各地今后在房屋建筑設計與施工之前,必須充分重視房屋的選址應遠離地質斷層,防患于未然。 房屋結構設計與施工質量、房屋裝修是決定房屋抗震性能中受人為影響最大的兩個因素。在房屋結構設計中,一般而言,剪力墻結構的抗震性能優于框架結構,框架結構優于磚混結構。在施工質量中,建筑物必須嚴格根據抗震設計規范施工。 居住者在房屋裝修時不得隨意更改房屋結構,尤其是不可隨意更改房屋承重墻等一些關鍵部位,更改結構時應得到專業人士的指導或相關許可,任何擅自改動都有可能降低房屋抗震性能,造成致命隱患。
1 建筑物的重要性決定了其不同程度上的抗震性能
不同結構型式是不同建筑物功能需求和性價比所決定的,不能單單片面的說地震來臨時,哪種結構型式就一定好哪種結構型式就一定不好;因為按目前的抗震設防標準,它們有一個共同的設防目標:小震不壞 、中震可修 、大震不倒。
國家按建筑物發生災害時對人民生命財產可能造成損失的程度,按建筑物分為甲乙丙丁四類。主要的、重要的水電站、醫院、電力、通訊等生命救援保障和人員密集建筑被定為甲類或乙類,一般的住宅、辦公等均定義為乙類,設防的目標也不同:丙類建筑在設計時按設防目標進行;甲乙類建筑設計時至少要提高1度,請注意,這里均指是烈度而不是震級,這也很好理解,好的地基要比差的地基抗震性能好,處在地震活動帶的建筑自然發生地震的幾率大,抗震性能也很難保證。
2 建筑物得抗震性能首先取決于建筑物的抗震設防標準
國家根據地震發生的可能性和震害的嚴重性確定各地區基本設防烈度,這是各地區抗震設計的基本參數,主要代表地面加速度的大小。設防烈度一般分6~9度,上海地區設防烈度主要為7度,崇明、金山為6度。對具體建筑物,需要結合建筑使用功能的重要性確定建筑的抗震設防標準,即確定設計烈度和抗震等級。對一般建筑,設計烈度就是本地區設防烈度。設計烈度愈高,抗震能力愈強,但建筑物造價也愈高。
2.1 房屋結構的抗震性能與合理的抗震設計密切相關。
抗震設計就是要選擇合適的結構形式,確定合理的抗震措施,保證結構的抗震性能,確保建筑物滿足“小震不壞、中震可修、大震不倒”的抗震目標。所謂中震,指設防烈度,小震比中震小約1.55度,而大震則比中震增加約1度。合理的抗震設計主要基于先進的抗震理念、系統的分析計算和恰當的抗震措施。既要注意控制抗震指標如軸壓比、相對變形等,又要采取合適的抗震構造措施。
目前高層住宅主要采用現澆剪力墻結構、框架-核心筒或框架-剪力墻結構,具有較好的強度和變形能力,抗震性能相對較好。因此,無論板式住宅還是點式住宅,只要設計合理,都可滿足抗震要求。多層住宅大部分采用磚混結構,目前多采用現澆樓板,并采取設構造柱和圈梁等抗震措施,或者采用框架結構,大大增強了抗震能力。部分建筑外形怪異,平立面不規則,傳力體系復雜甚至需要多次結構轉換,這既增加了建筑物造價,也影響了建筑物的抗震性能。
2.2 房屋抗震性能還與施工質量等其他因素有關。因此加強施工質量監督,規范既有建筑的使用管理是十分必要的。
3 建筑物抵抗地震的能力不確定性
為了搞好抗震結構的施工,首先要了解地震力對建筑物可能引起的破壞作用。因為地震時不確定性和復雜性,我們很難用“數值設計”來有效控制結構的抗震性能,因此不能完全依賴于計算。根據目前對地震規律的認識,抗震設計的指導思想是:房屋在使用期間,對不同強度的地震應具有不同的抵抗能力,一般小震發生的可能性較大,因此,要求做到結構不損壞,這在技術上,經濟上是可以做到的。近幾年臺灣發生三次地震,福建沿海受其余震波影響,沒有造成建筑物嚴重損壞。如果要求結構遭受大震時不損壞,這在經濟上是不合理的,因此可以允許結構破壞。但是在任何情況下,不應導致建筑物倒塌,概括起來說,抗震設防的一般目標就是要做到“小震不壞,大震不倒”。從另一方面看,一個地區的基本地震烈度也是難以準確估計的,要根據當地的地址,地形和歷史地震情況等確定,因此房屋抗震能力很難確定。那就要在結構強度上和構造上下功夫,才能做到建筑物裂而不倒。這種危中脫險的工作主要依賴于良好的結構設計和施工質量。
4 施工質量和房屋抗震性能的關系
在強烈地震的作用下,要使建筑物裂而不倒,關鍵在施工過程的控制,以保證結構本身具有足夠的強度和各部件間有可靠的連接。對混合結構來說,一是砌體強度,也就是磚塊本身和砂漿標號。二是內外磚墻的咬槎以及構造柱,圈梁和墻體的連接構造。對鋼筋混凝土結構來說一是混凝土和鋼筋本身的強度。二是節點間的連接構造,兩者都和施工的質量密切相關,強度和構造連接的施工質量好,建筑就能抵抗地震,否則建筑物就要遭到嚴重破壞,以致倒塌,人民生命財產遭到嚴重損失。
5 目前影響建筑物抗震的施工質量問題
對于磚混結構的建筑物,在材料選用、施工質量上應當引起足夠重視。砌體強度不足,砂漿不飽滿,砂漿標號低,砌筑前磚塊不濕潤,冬季施工不澆水都會降低砂漿的粘結力和砌體的抗剪強度;加之砌體結構通常采用單塊的材料和砂漿砌筑,抗拉壓力低,且主要以手工操作,容易喪失承載能力。圈梁和構造柱的配筋不合理:圈梁和構造柱依靠其中的鋼筋將建筑上下各層,各片墻體連在一起,哪里連接不好,哪里就容易出問題。我們在施工現場經常發現鋼筋搭接長度不夠,鋼筋接頭該錯開的不錯開,該彎鉤的不彎鉤,鋼筋位置偏差大等等,都會直接影響到結構整體連接。 構造柱與墻體拉接筋放置不準確,構造柱混凝土振搗不密實,都直接影響構造柱的抗震能力,關系到磚混結構建筑物能否滿足抗震要求。
對于混凝土結構的建筑物,當前鋼筋混凝土結構的施工存在問題比較多,對結構的抗震性能極為不利。首先混凝土強度問題,混凝土水泥用量,水灰比和含砂率控制不嚴,對混凝土濕潤養護不重視,振搗不密實,柱頭施工縫遺留木屑、焊渣等造成柱的斷層,這些都是削弱結構支撐豎向荷載能力的重要因素,嚴重影響房屋抗震能力。
6 總結
前面談到影響房屋抗震的施工質量問題,這些都不是很難做到,只要我們在施工過程中認真負責,引起重視,發現問題及時整改,嚴格按照施工規程操作,控制好每一個分項、分部工程,絕不片面追求施工速度不顧工程質量,對人民的生命財產要有高度負責的態度。只有這樣,才能使建筑物的抗震安全性能得到進一步保證,人民生命財產免遭損失。
參考文獻:
[1]楊佑發;鄒銀生 底部框剪砌體、房屋空間彈塑性地震反應分析 [期刊論文] -振動與沖擊2003(01) .
[2]楊佑發 底部框剪砌體房屋抗震及隔震性能研究 [學位論文] 1998 .
[3]楊佑發;魏建東 結構動力分析的非線性擬動力方程法 [期刊論文] -世界地震工程2002(02) .
中圖分類號: TU2 文獻標識碼: A
前言:在建筑方案設計中,建筑物的抗震設計是一個非常重要的環節,它和人們的生產生活有著非常密切的關系。現有的研究和經驗表明,在建筑方案設計中全面貫徹抗震設計的主要內容,將二者結合到一起,能夠有力的提高建筑物的抗震能力。
1、建筑方案設計在建筑抗震設計中的幾個主要設計問題分析
1.1建筑體型設計問題
建筑體型包括建筑的平面形狀和立體的空間形狀的設計。震害表明,許多平面形狀復雜,例如平面上的外凸和凹進、側翼的過多伸懸、不對稱的側翼布置等在地震中都遭到了不同程度的破壞。海城地震和唐山地震中有不少這樣的震例。而平面形狀簡單規則的建筑(包括單
層和多層建筑)在地震中都未出現較重的破壞;有的甚至保持完好無損。沿高度立體空間形狀上的復雜ss和不規則,例如相鄰單元的高差過大、出屋面建筑部分的高度過高、有的建筑裝飾懸伸過大過高,這些沿高度形狀上的變化,在地震時都會造成震害,特別是在建筑結構剛度發生突變的部位更易產生破壞。在歷次地震中工業與民用建筑都有此類震例。
所以,在建筑體型的設計中,應盡可能的使平面和空間的形狀簡潔、規則;在平面形狀上,矩形、圓形、扇形、方形等對抗震來說,都是較好的體型。盡可能少做外凸和內凹的體形,盡可能少做不對稱的側翼和過長的伸翼,在體型布置上盡可能使建筑結構的質量和剛度
比較均勻地分布,避免產生因體形不對稱導致質量與剛度不對稱而引起建筑物在地震時發生對抗震極不利的扭轉反應。在建筑方案設計中,特別是高層建筑的建筑方案設計中,為了建筑立面美觀和藝術上創意,復雜的建筑體型是難以避免的,但是,在設計時一定要把建筑藝術、建筑使用功能同結構抗震安全很好的地結合起來。
1.2 建筑平面布置設計問題
建筑物的平面布置在建筑方案設計中是十分重要的部分,它直接反映建筑的使用功能和要求。柱子的距離,內墻的布置,空間活動面積的大小,通道和樓梯的位置,電梯井的布置,房間的數量和布置等等,都要在建筑的平面布置圖上明確下來;而且,由于建筑使用功能的不同,每個樓層的布置有可能差異很大。因此,這就帶來一個建筑平面布置的多樣化如何同時考慮結構抗震要求的問題。一個比較突出的問題是,建筑平面上的墻體(包括填充墻、內隔墻、有相應強度和剛度的非承重內隔墻)布置不對稱;墻體與柱的分布不對稱,不協調;造成建筑結構質量與剛度在平面上分布的不對稱,不協調;使建筑物在地震時產生扭轉地震作用,對抗震很不利。根據抗震設計審查結果統計,有的城市在建筑平面布置上不合理的達17%,在墻體設置上不符合抗震要求的達24%。
1.3地展力問題
在高層建筑方案設計中,除了考慮垂直荷載和水平荷載外,還要考慮地展力。往往由水平地震力產生的內力,成為設計控制的主要因素。高層建筑的結構體系有多種,當地震烈度低于8度時,只要建筑物體型合理。垂直剛度均勻,九層以下的高層建筑,仍可采用鋼筋混凝土框架結構。然而,由于高層建筑結構體系自身的柔性較大。加上設計師在建筑方案設計時因商業要求,無法建筑結構上進行合理的設計,從而引起建筑結構設計不合理,造成這類建筑抗震性能先天不足,加上臨街一面底層抗震墻設簧減少,引起底層的側移剛度比縱橫墻較多的第二層要小,這種結構的建筑物其地震傾覆力矩主要由鋼筋砼框架柱承擔,使得底層鋼筋砼框架柱的承載能力大為降低,當地震時,因為下柔上剛,從而危及整座建筑的安全。如何才能克服這些閑難就是建筑方案設計者所面臨問題。
1.4 缺乏理論指導和經驗
建筑抗震設計中缺乏科學規范的理論指導,缺乏實際經驗的積累;我國對地質地震的認識尚不夠完善,對地震的成因,預測,防治研究不夠深入,地震防治規范不夠科學。因此,在進行建筑結構抗震設計時候,缺乏一定的科學依據,或依據的是不完善的理論。因此,難以在建筑結構設計中完美融合防震設計理念。設計中,沒有能夠深入研究地震對建筑結構破壞的層次和順序,難以做到重視主體的設計而兼顧細節問題。沒有能根據實際情況靈活變通的運用抗震設計準則。
2、建筑方案設計和抗震設計的關系分析
建筑方案設計對建筑抗震起重要的基礎作用。建筑的結構設計難以對建筑方案設計有很大的改動,建筑方案設計已經初步形成了,建筑結構就必須按照原則服從建筑方案設計的要求。設計師在建筑方案能夠全面的考慮到抗震設計的要求,那么結構設計人員按照建筑方案
對結構部件進行科學、合理的布置,保證建筑結構質量與結構剛度均勻分布,結構受力和結構變形共同協調,提高建筑結構抗震性能和抗震承載能力;如果建筑方案沒有考慮到抗震的要求,直接給結構抗震設計帶來更大的難題,建筑布局設計限制結構抗震布局設計。為了進
一步提高結構部件抗震承載能力,就必須增大結構構件的截面面積,這樣又會造成很多不必要的浪費。所以,在建筑抗震設計的過程中建筑單位要對建筑體型設計、建筑平面布置設計、屋頂建筑抗震設計等問題加以關注。
3、在建筑方案設計中考慮抗震問題的作用
3.1體型設計中能夠避免質量和剛度分布不均
建筑體型包括建筑的平面形狀和主體的空間形狀的設計。震害表明,許多平面形狀復雜,如平面上的外凸和凹進、側翼的過多伸懸、不對稱的側翼布置等在地震中都遭到了不同程度的破壞。唐山地震就有不少這樣的震例。平面形狀簡單規則的建筑在地震中未出現較重的破壞,有的甚至保持完好無損。沿高度立體空間形狀上的復雜和不規則在地震時都會造成震害。特別是在建筑結構剛度發生突變的部位更易產生破壞。因此在建筑體型的設計中,應盡可能地使平面和空間的形狀簡潔、規則:在平面形狀上,矩形、圓形、扇形、方形等對抗震來說都是較好的體型。盡可能少做外凸和內凹的體型,盡可能少做不對稱的側翼和過長的伸翼。在體型布置上盡可能使建筑結構的質量和剛度比較均勻地分布,避免產生因體型不對稱導致質量與剛度不對稱的扭轉反應。
3.2屋頂建筑的抗震設計作用
屋頂建筑的抗震設計人員常被人們忽視,這是因為屋頂并不是結構承重的重要部分。所以人們并不重視這一方面的設計。事實上恰恰相反。屋頂建筑是建筑方案設計的非常重要的一部分,根據現在一些地震的破壞來看。屋頂建筑是地震破壞最嚴重的地方之一。在這一部
分的設計中應該盡量降低屋頂建筑的高度,在材質上選擇用高強輕質的建筑材料和輕型的建筑造型,保證屋頂建筑的結構質量和剛度的均勻分布,這樣就能保證地震作用沿結構方向的均勻傳遞。同時在設計的過程中,要注意屋頂建筑與整體建筑的重心應該保持一致,這樣能
夠顯著提高屋頂建筑的抗震穩定性。減少地震過程中扭轉、變形等情況對建筑物自身的破壞。
結語:
總之,建筑方案設計在建筑的抗震設計中非常重要,二者之間有著非常密切的關系。因此,對于建筑方案的抗震設計,我們要有足夠的重視并且使其能夠發揮它的作用。從而保證建筑的抗震能力,保障人們的生命財產安全。
參考文獻:
中圖分類號:TU323文獻標識碼: A 文章編號:
引言
鋼筋混凝土框架體系,隨著材料性能和制作工藝的不斷提高和改善,應用范圍逐漸擴大。其建筑布置比較靈活,可以設計成具有較大空間的各類建筑。但是,由于其整體結構剛度小、冗余度低, 造成其抵抗強震和抗倒塌能力弱,在強震中易造成較大損失, 震后修復困難, 修復費用較高。鑒于以上原因,為了在地震區建設符合“小震不壞、中震可修、大震不倒”設防水準的框架結構房屋,《建筑抗震設計規范》做了相應的規定和要求, “強柱弱梁”就是保證“中震可修、大震不倒”的重要技術措施之一。由于框架結構一般不具備多道抗震防線, 因此延性框架塑性鉸要求發生在不影響整體穩定的梁上,使柱得到保護,從而保證整體結構的穩定, 做到“大震不倒”,降低危害。
1國內對“強柱弱梁”理念的研究現狀
“強柱弱梁”是鋼筋混凝土框架結構抗震設計的基本原則之一,即在地震作用下,梁先于柱發生破壞。 因為梁破壞通常是局部的,且如果梁端出現塑性鉸可以消耗掉一部分地震能量,從而更好的保證整個結構的安全。 而柱破壞則可能導致結構整體的倒塌,后果嚴重。我國現行《建筑抗震設計規范》也對“強柱弱梁”的實現做出了具體規定,即除框架頂層和柱軸壓比小于0.15及框支梁與框支柱的節點外,對于考慮地震作用組合的一、二、三級框架柱,柱端組合的設計彎矩應乘以相應的增大系數。
清華大學、西安交通大學、北京交通大學土木工程專家組[1]通過對汶川地震的震害分析指出: 由于樓板的增強作用、框架梁上增加砌體或填充墻的增強作用、增大上部結構的剛度等,使得框架梁或屋蓋的實際剛度增大, 在實際框架結構震害中, 很少看到“ 強柱弱梁”型破壞。由于地震的復雜性,現澆樓板的影響和鋼筋屈服時的超強等因素的影響, 難以實現“ 強柱弱梁”的破壞機制, 這也引出應該根據這些因素來提高柱端彎矩增大系數從而達到梁鉸機制。從單質點體系理想的荷載- 變形關系曲線[2]出發: “ 強柱弱梁”原則是延性框架結構設計的關鍵, 圍繞這個問題來進行“ 強柱弱梁”設計, 那么“ 強柱弱梁”設計原則不是通過增加柱梁剛度比,而是通過降低梁的相對強度、提高柱的相對強度來實現的。從構件層次和結構體系層次對“ 強柱弱梁”進行概率分析[3]:抗震等級越高,柱彎矩增大,系數越大,軸壓比限值越小,梁的界限受壓區高度越小, 從而使柱端形成塑性鉸的概率減小, 梁端出現塑性鉸的概率增大, 從而增大了“ 強柱弱梁”的形成概率。通過對“ 強柱弱梁”的影響因素的分析[4]:為了滿足“ 強柱弱梁”的抗震設計要求,柱端設計彎矩均應按梁端截面實配鋼筋的抗震受彎承載力進行調整放大,而且在進行抗震設計時, 應考慮框架梁的塑性內力重分布,對梁端負彎矩進行適當調幅,同時應采用柱邊緣所對應的梁端彎矩設計值進行截面配筋及裂縫驗算。另外需要合理控制框架梁底部鋼筋伸入框架柱的數量,來避免鋼筋過多帶來的超強剛度的影響,尤其應該考慮現澆樓板及其配筋對梁端截面受彎承載力的影響。
2 影響“強柱弱梁”實現的因素
“ 強柱弱梁”措施作為建筑抗震設計的一項重要設計原則, 在工程設計中占有重要的地位和作用,其最終目的就是形成延性框架設計, 從而為保證生命和財產的安全做貢獻, 將災害損失降到最低。綜上所述,影響“ 強柱弱梁”破壞機制的因素眾多,其中關鍵四個因素如下:
Ⅰ)現澆樓板的影響。在現澆結構中,樓板是與框架梁一起澆筑的, 兩者結合良好,共同工作的能力強,樓板可以顯著的提高框架梁的抗彎剛度和抗彎承載力。
Ⅱ)填充墻的影響。填充墻是一個最復雜因素, 對結構的剛度影響很大,如果是把強柱弱梁作為包括填充墻在內的整體結構抗震的屈服機制設計目標時,那么預期出鉸的框架梁上則不應設置填充墻,或者在填充墻與框架柱之間留有足夠的縫隙。
Ⅲ) 鋼筋超配置的影響。鋼筋超配會引起梁端超強,原因有以下幾點:一是實際采用的鋼筋屈服強度比設計的鋼筋屈服強度高; 二是鋼筋屈服后的應變硬化指標較高; 三是設計配筋構造, 滿足最大或最小構造要求,導致的梁端抗彎承載力提高; 四是設計人員為了保證安全系數,人為地加大梁的配筋率。
Ⅳ)軸壓比的影響。在進行結構設計時,多是根據軸壓比來確定柱的截面尺寸,規范中為保證柱有一定的延性,對柱的軸壓比規定了上限。 在設計中,由于建筑美觀或者降低造價等各方面的要求,設計人員常常在滿足軸壓比的前提下盡量縮小柱截面尺寸,尤其是在結構底層柱。 因此規范中規定的軸壓比限值過高,框架柱截面尺寸偏小,也是造成實際震害中出現“強梁弱柱”的原因之一。
3 實現“強柱弱梁”的討論
通過以上分析可知, 若想實現“強柱弱梁”破壞機制,我們應該綜合各種因素來分析,使“ 強柱弱梁”原則更加明確化、具體化、規范化。
首先,嚴格控制梁端鋼筋的超配。利用概率分析的方法來確定截面超配筋對梁或柱的影響,來具體確定截面的超配筋系數以及控制伸入框架柱鋼筋的數量, 而且還要明確的確定彎矩的調幅系數或參數,以便滿足結構的“ 強柱弱梁”的設計要求, 從而最終確定最佳的柱端彎矩增大系數,減少過多鋼筋在梁柱節點區的錨固,保證節點區的混凝土的質量。
其次,應具體考慮現澆樓板對“ 強柱弱梁”機制的具體影響來提取影響參數。這里主要是綜合考慮剪跨比、軸壓比、橫向梁剛度、板內配筋情況等因素等效來確定板的有效寬度。根據最大層間位移角來計算板的有效寬度,即:T形梁的有效翼緣寬度, 主要通過考慮樓板對梁端抗負彎矩能力的貢獻、對受彎承載力的影響以及結構內力重分布的影響,來確定柱端彎矩增大系數。
此外,增加柱子的非彈性變形和耗能能力。按照現行抗震規范進行框架結構設計,無法保證框架在地震中一定不發生柱鉸破壞,而對“強柱弱梁”的設計規定也主要是為了防止框架發生倒塌。若框架柱有足夠的變形和耗能能力,就可以一定程度上防止框架發生倒塌。 增加框架柱抗震能力的措施有很多,如采用鋼套管或纖維增強復合塑料等材料對框架柱進行側向約束或者采用高強螺旋箍筋,增加對柱核心混凝土的約束,提高柱的抗倒塌能力;另外,在技術條件和工程造價允許的前提下,采用型鋼混凝土柱、鋼管混凝土柱等組合結構柱,亦可大大提高結構的抗震性能。
參考文獻:
[1] 清華大學、西安交通大學、北京交通大學土木工程結構專家組. 汶川大地震建筑震害分析[ J] . 建筑結構學報, 2008, 29( 4) : 1- 9.
中圖分類號:TU318 文獻標識碼:A 文章編號:
一.前言
由于經濟發展速度加快,社會需求不斷增多,使得建筑的高度不斷加高,形態愈加復雜,建筑結構中抗震設計也趨于多樣化。我國作為一個多震國家,結構設計中應注重抗震設計,良好的抗震設計和抗震措施至關重要。抗震設計中,要進行地基基礎的抗震設計。抗震構造措施是結構設計的重要內容。針對房屋建筑結構中的抗震設計要求,進行結構抗震設計和抗震措施,在結構設計與建筑施工中,應熟悉各種結構設計的抗震構造措施。
二.建筑結構抗震設計的基本要求
地震作用越大,房屋抗震要求越高。不同設防烈度和場地上,結構的實際抗震能力會有差別,結構可能進入彈塑性狀態的程度不同。震害表明,未經抗震設計的鋼筋混凝土結構,在7度區只有個別構件破壞,8度、9度破壞增多,因此,對不同設防烈度和場地可以有明顯差別。結構的抗震能力主要取決于主要抗側力構件的性能,主、次要抗側力構件的要求可以有區別。如框架結構中的框架與框架――抗震墻結構中的框架應有所不同。房屋越高,地震反應越大,其抗震要求越高。綜合考慮地震作用,結構類型和房屋高度等因素劃分抗震等級進行抗震設計,可以對同一設防烈度的不同高度的房屋采用不同抗震等級設計;對同一建筑物中結構部分采用不同抗震等級。
三.影響建筑抗震的因素分析
1.建筑抗震取決于所選取建筑結構形式
為實現“小震不壞、中震可修、大震不倒”的抗震目標,新版《建筑抗震設計規范》中取消了磚混內框架結構,提高了磚混結構建筑的設計要求。目前普遍使用的框架-剪力墻結構、剪力墻結構、框架結構三種結構形式中,框架-剪力墻結構的抗震性能最為突出,剪力墻次之。單純的框架結構造價雖然抗震性能不如前兩種,但其造價較低,施工技術成熟,是目前最為常見的結構形式。根據建筑當地的實際情況,結合建筑的使用功能,選取合適的結構形式,對于建筑抗震意義重大。
2.建筑抗震取決于適宜的抗震措施
在場地類型不同的情況下,抗震措施主要由建筑的不同等級決定。在確定建筑等級及場地類型之后,將先進的抗震理念和系統的分析計算納入到抗震措施設計中,即可改善建筑抗震設計,提高建筑抗震效果。
3.影響房屋建筑抗震性能的因素
房屋建筑抗震性能取決于場地選擇、施工質量等其他因素。建筑工程場地選擇不當等造成施工質量下降,這些因素都可能對建筑結構的抗震性能造成重要影響。選擇建好的工程場地、加強施工質量監督,對于提高建筑抗震性能是十分必要的。
四.建筑抗震設計具體分析
抗震設計的重要基本要求就是要確保房屋基礎構造的延性設計要求得以保證,能夠在建筑結構延性問題上設立多道防線,以此才能避免建筑結構脆性過大造成的構造強度失衡、失控的現象發生,從而影響其抗震性能及成果。因此,這就需要做好以下幾點把握。
1.周全考慮房屋建筑選址問題在房屋工程項目立項之初,就要周全考慮好能夠發揮抗震成果的選址問題,如健全周到考慮好土體結構、地質、地貌等問題,并要預測分析地震活動發生時建筑構造的承受能力,且要記錄相關技術資料檔案中,待實地考證時能夠綜合評價。此外,還要避開影響建筑構造抗震效果發揮的不利區域、地段等,當避無可避時應當立足實際采取合理控制措施
2.加強建筑構造規劃研究
由于地震發生時建筑結構本身會發生應力過于集中、突破塑性變形彈性極限等的可能,進而形成結構抗震薄弱部分。因此,建筑構造設計應能保證建筑結構延性、安全度、以及選取合適的建筑平面、剖面進行設計,既要保證建筑結構強度穩定,又能避免建筑脆性過大而延性過小的負面現象發生。
3.保證地基與基礎設計要求當房屋項目工程的地基土體為粘性土、軟土、液化土、以及不均勻沉降土時,應當評估好地基的基礎沉降是否在預控范疇之內,是否發生嚴重不規則沉降現象,從而才能有針對性的采取防控措施。
4.滿足建筑構造體系設計要求
抗震性能價值體現是建筑構造體系設計中的重要組成部分。因此在構造設計上就要綜合分析、周全考慮、能夠統籌把握好各項綜合因素。如考慮好抗震防御等級、抗震強度控制指標、項目建設場地、以及基礎地基處理、供應材料的質量體系要求、現有技術規模等問題。
5.確保建筑構造的構件要求
(一)房屋建筑工程的結構基礎構件設計應當滿足相關規程標準、要求,如混凝土的圈梁、構造柱、芯柱、或者配筋砌體等的質量建設體系要求就必須能夠保證。
(二)要保證混凝土結構合理設計,在建筑的具體結構構件應能具備尺寸合理、縱向承重鋼筋及箍筋的強度達到設計標準,目的是控制剪切破壞先于彎曲破壞發生的可能,以及防止鋼筋屈服而引起的構件塑性變形遭受破壞發生。
(三)鋼結構建筑施工時能夠保證其構件尺寸、規格、數量合理,進而才能避免整體構造抗震成果發揮不利、結構失穩的現象發生。最后,還要周全考慮好建筑構造構件之間的鏈接、銜接性的體現,控制好構件節點的穩定性,保證其在地震發生時的塑性破壞能夠晚于其他結構構件,進而才能增強建筑結構的整體穩定性與安全度。
五.建筑結構設計抗震關鍵措施和設計方法
1.建筑結構抗震措施要點
(一)房屋建筑結構設計要從建筑的全局出發,全面考慮各種建筑部位的功能,在此基礎上,科學設計每個部分的構件,保證每個部件之間的契合,促使每個部件或者是若干部件組合起來可以完成某一特定的設計要求,滿足一定的現實需求,同時,通過抗震設計,使得每個構件都可以具有相應的承載力,當地震來襲,每個構件都可以有著一定的次序先后破會,整體組合構件將會有著更強大的承載力和柔性,從而延緩地震破壞的速度,消耗爆發的能量。增強建筑的整體抗震能力。
(二)要嚴格選擇地基選址,地基選址是進行建筑結構設計的基礎,因此,在建筑結構抗震設計中,要科學避開山嘴,山包,陡坡,河流等不利因素,要本著堅硬,牢固,平坦,開闊的選址原則。親身實地,利用先進技術設備,進行地質勘探,山石水土監測,并取樣論證,科學嚴謹分析。力求使得整個地基牢固可靠,地質穩定無滲漏,無坍塌,無暗河,無熔巖,無火山……從而保證整個地基不會因為承載而發生小范圍的坍塌。影響到整體承載能力和抗震能力設計。
(三)采用合理的建筑平立面。建筑物的動力性能基本上取決于其建筑布局和結構布置。建筑布局簡單合理,結構布置符合抗震原則,通過無數次的實驗表明,簡單、規則、對稱的建筑結構抗震能力強,對延緩地震烈度范圍延伸,消耗地震的能量,減少地震對整體結構的破壞,而且,對稱結構容易準確計算其地震反應。
(四)選擇合理的結構形式。抗震結構體系是抗震設計應考慮的關鍵問題。建筑結構抗震設計中,不同結構的抗震結構體系的承載力受到抗震設防烈度、建筑高度、場地條件以及建筑材料、施工條件、經濟條件等多種條件的影響,因此房建結構抗震設計要綜合考慮,做到科學選擇,嚴謹設計。
(五)結構良好的延性有助于減小地震作用,吸收與耗散地震能量,避免結構倒塌。因此,結構設計應力求避免構件的剪切破壞,爭取更多的構件實現彎曲破壞。
六.結束語
因為涉及到人類生命財產安全的重要問題,建筑物的抗震問題是目前建筑結構設計界討論比較多的話題之一。因此,我們在對建筑物進行結構設計的時候,必須把房屋建筑結構中的抗震設計要求放到非常重要的位置,并采取適當的措施,盡量避免地震對建筑物的損壞,為保障人民的生命及財產作出應有貢獻。
參考文獻:
[1]戴國瑩.建筑結構基于性能要求的抗震措施初探[J].建筑結構,2011,(08)
[2]吳智,李貴男,段壯志.民房建筑結構抗震能力分析與抗震措施探討[J].山西建筑,2012(10).
[3]高利學.淺談高層建筑的抗震設計與抗震結構[J].中國新技術新產品,2012,(03)